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We use a stochastic description of models with a dynamic in quenched disorder to analyze the mechanism
of their self-organization to a critical state in terms of memory effects. We introduce a framework to charac-
terize both memory effects and avalanche events which suggests that self-organization can result in general
from memory. This issue is settled by the introduction and the analysis of a model that contains explicitly
memory and generalizes the corresponding dynamics in quenched disorder. The model displays a rich behavior
and self-organized critical properties for a whole range of the exponent that tunes the strength of memory.

PACS number(s): 02.50.—t, 05.40.+j

Many efforts have been recently devoted to uncover the
mechanism underlying the tendency of large statistical sys-
tems to self-organize into a critical state [1—-6]. This issue
has a great relevance since self-organized criticality mani-
fests itself in a large variety of phenomena ranging from
earthquakes and sandpiles [1,7] to creep phenomena [8],
growing interfaces in a disordered medium [9], and biologi-
cal evolution [10]. The mechanism of self-organization in
these systems belong to two main classes whose prototype
models are the sandpile model [1] and the biological evolu-
tion Bak-Sneppen model (BSM) [10]. The self-organized
critical (SOC) state in the latter class is built by a dynamics
based on the selection of the minimum of a random disorder
field. One distinguishing feature of dynamics in a disordered
medium lies in the emergence of memory effects [11]. In this
paper we will focus on this aspect of the dynamics using a
recently proposed [12] stochastic description of the quenched
process which results from addressing the question of how
one can describe and reproduce the process without knowing
the “microscopic’ values of the quenched disorder variables.
From this perspective we will identify the dynamical vari-
ables involved in a simplified “effective” dynamics. These
variables are the age of the quenched variables, that is the
time elapsed since their last update, and turn out to be a very
useful tool to describe both memory effects and SOC prop-
erties in general. This suggests that a SOC state may result as
a consequence of memory with no relation to quenched dy-
namics. This is shown explicitly by the introduction of a
model, defined in terms of age variables, which generalizes
the qualitative behavior of the corresponding quenched dy-
namics. The occurrence of a very rich scenario of SOC be-
havior, wider than that observed in quenched dynamics, sug-
gests that criticality is not a peculiarity of dynamics in
quenched disorder but rather it arises in general as a result of
memory effects. The model has a general phenomenological
nature which allows also for a derivation independent of
quenched dynamics. As such it reveals an alternative mecha-
nism for self-organization.

The BSM, introduced to model biological evolution [10],
has a very simple definition: At =0 assign a uniformly dis-
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tributed random variable (RV) %, ,- on each site i of a
d-dimensional lattice. At each time ¢ select the smallest RV
Nmin(£)=min; 7, , and replace it and the RV’s on the neighbor-
ing sites with newly extracted uniform RV’s, leaving all
other RV’s unchanged. In biological terms, time is measured
in mutation events and the species which undergoes mutation
is the one with the smallest fitness 7, ,. The system self-
organizes to a critical steady state in which almost all RV’s
are above a certain threshold value 7. . The critical nature of
the SOC state can be properly described [5,10] in terms of
avalanches, i.e., causally and spatially connected series of
events.

The persistence of activity displayed by avalanche events
can be connected to memory effects by noticing that evolu-
tion will take place more often on recently updated regions
than in older ones. This is because a site whose RV has been
checked a large number of times in the search for the mini-
mum RV will probably have a large RV. It might still be the
smallest in the future but the probability for this to happen
gets smaller and smaller as time goes on. A quantitative
translation of this observation requires a description of the
process which is not based on the values of the RV’s 7; , but
rather on the knowledge of their distributions p; ,(x)dx
=Prob(x< 1, ,<x+dx) [12]. Indeed once the values of
7;,, are given, the selection of the smallest RV is a deter-
ministic operation (with probability 0 or 1 for each i). On
the contrary, if the distributions of #;, are given, each site i
will be selected with a probability u;,= Prob(z;,<7;,
Vj#i)=[§ dx p; (x)1;;f} dy p; (y). Taking the distri-
butions p; (x) as dynamic variables makes the effects of
memory in the dynamics explicit. It is indeed the distribution
P;(x), rather than the value of 7, ,, that “remembers,” i.e.,
stores in a conditional way, the events of the past history.
This description, proposed originally in Ref. [13] and further
refined in Ref. [12], is a different perspective for quenched
growth problems which eliminates the problem of quenched
averages, which are performed by the dynamics itself, at the
price of introducing a memory in the dynamics (for more
details see Ref. [12]). The use of distributions as dynamical
variables makes this description far more complex than the
standard one. This raises the question of whether a simplifi-
cation of this dynamics, which however retains its essential
features, is possible. The key observation, in order to find
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FIG. 1. The distributions n; (L) (X) and ux(L) (OJ) for the
Bak-Sneppen model. u;(L) was obtained measuring the frequency
pi(L)=n(L)up(L) of events in which a site with age k was se-
lected during the BSM’s evolution in the steady state. The fitting
lines have slopes 8=0.58 and a=1.30, respectively.

simpler dynamical variables, is that RV’s with the same age
have experienced the same events and hence have the same
probability of being selected. The age variable (AV) &, , is
the time elapsed since the last update on site i and

0 if Nie+1 #* Ni,e

ki,t+1 (1)

ki,t+ 1= else

The probability w,, that #;, is the minimum RV will in
general depend on its age, on the age k; , of all other RV’s at
the same time, and on the age of the last k; , variables that
have been selected in the process. Neglecting the latter de-
pendence, with a crude approximation [12,14], one finds that
the probability that a site is selected has a power law depen-
dence on its age: u; ,~k;,” with a=2. In this approxima-
tion, u; , depends on the ages k;, of other sites via the nor-
malization condition Z;u;,=1 [12]. Direct numerical
simulation confirms this qualitative behavior with an expo-
nent @=1.30%+0.02 (see Fig. 1). '

AV’s, which result naturally from a simple discussion of
the dynamics in a disordered medium, are a useful tool to
describe in general both the effects of memory and the sce-
nario of self-organization. AV’s can be introduced in any
statistical system with sequential update dynamics coupling
them to the dynamical variables 7;, via Eq. (1). We will
denote by n, , the distribution of AV’s, i.e., the number of
sites with age k. For a system of linear size L in d dimen-
sions Eknk,t=Ld. We can define the age of a system as the
average age of microscopic variables measured in units
of  macroscopic time 1/L%  K(L,t)=L %Ik,
=173 xkny ,. The scaling of the age of the system, in the
stationary state, with its size K(L)~L%* provides a measure
of memory. If (=0 we will say no memory exists while
>0 will signal the presence of large very old regions in the
system; the local dynamics will depend on a large period of
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FIG. 2. Fraction of infinite avalanches N.(a) and estimate of
the 7(a) exponent for system sizes L <256.

the past history so that the state of the infinite system will
depend on the whole history of the process [15].

Let us illustrate this definition with some specific ex-
amples: consider the Ising model with Metropolis dynamics
[16]: ;.= *1 are spin variables and at each time one site is
selected at random and it is flipped with a probability related
to Boltzmann weights. On average 7, , will flip once every
L? events so that {=0. The same conclusion can be drawn
for all Markovian systems. Consider next the prototype
model of SOC, the sandpile model [1]: #;,=0,1, ... is the
height of the sandpile on site i. The dynamics comprises
either toppling events, when some %;,=2d relaxes
(7;,,+1=0) distributing one sand unit to each of its neighbor
sites i+ 6 (74 5¢+1= Mi+s,1 1), or random sand addition
events, when all 7; ,<<2d. Defining AV k; , through Eq. (1),
we found {=0 also in this case. On the contrary for the d=1
BSM we found {=1.46*=0.03. The distribution n, ,, aver-
aged over realizations is shown in Fig. 2 and it follows a
scaling behavior

n(L)=(ng )=k Pf(k/L'*%) for k>0 2
with 8=0.58*+0.01. The exponent B coincides with the ex-
ponent d introduced in Ref. [17] which describes the scaling
of the number of updates on a given site in a period of time
T with T. The definition of K(L,t) and the normalization of
ny , imply that 8 is also related to {= /(1 — ), in excellent
agreement with numerical results.

If { is the indicator of the relevance of memory, the self-
organized nature is usually related to the occurrence of ava-
lanche events. An avalanche event is made up of a spatially
and causally connected sequence of events. Causal relation
can be identified by looking at the sequence 7,,(?)
=min;n;, of selected values [5,6,10]. If, e.g., Wmn(t+1)
< 7min(?), the site selected at time £+ 1 must have been up-
dated at time ¢ and hence the two events are causally related.
This causal (and spatial) connection may persist for a long
period of time and actually avalanches of all sizes can occur
in the BSM [5,6,10]: the probability that an avalanche lasts a
time s has a power law dependence N(s)~s 7 on s. A
rather intuitive and, to some extent, less ambiguous [18]
definition of avalanches is possible in terms of the variables
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k;. Consider the avalanche started at time ;. This will be
active at time fo+s if all sites i(z) selected at times
tg<t<sto+s had an age k;;) ,<t—1,. Indeed in this case all
the selected sites have been updated by the process initiated
at time ¢;. This avalanche will terminate at time ¢y +s when
a site with age k>s will be selected and will contribute to
the statistics N(s) of avalanches of size s. Note that this
method can be applied to any system, including the sandpile
model.

Having shown that AV’s allows a complete description of
memory and self-organization we can explore the connection
between these two phenomena by introducing a different
model. The model, inspired by our discussion on quenched
dynamics, is defined as follows: an AV k;, is assigned to
each site i=1, ...,L of a linear lattice with periodic bound-
ary conditions. Initially k; =0 Vi. At each time step ¢ one
site is selected with a probability M, = Mo (1+k; )~

which depends only on the age k; , of site i. When a site i is
selected, its age and that of its neighbors is set back to zero
(kit5¢,+1=0 for 6=0,=1) while all other ages are in-
creased by 1 (k; 1 =k;,+1 for |j—i|>1). The power law
dependence of the selection probability on k£ generalizes the
situation observed in the BSM (see Fig. 1). The constant
Mo, is fixed by the normalization Zny uy ,= 1. This condi-
tion introduces a nonlocal dependence of the selection prob-
ability which is of the same type as that implied by the
search of a global minimum in the BSM, as discussed above.
The requirement behind this condition (as in the BSM) is
that only one site is selected at each time step. This would
correspond to an extremely slow parallel dynamics, in which
the probability of selecting simultaneously two or more sites
is zero, and where the time is measured in selection events.
This limit of “slow driving”” underlies most (if not all) mod-
els of SOC. In general, the model describes a slowly driven
process with single update events selected from a power law
waiting time distribution. Contrary to the BSM, which has a
microscopic definition, the age model defined here has a phe-
nomenological nature. It requires the measure of the ‘“‘phe-
nomenological” parameter « but no assumption on the mi-
croscopic mechanism of the dynamics or on the interaction.
The definiton of the age model is also closer in spirit to the
theory of evolution, where usually the fitness of a species is
determined by its age [19]. For a finite L the system gets to
a steady state that is characterized by a distribution of
counters n,(L)=(n; ) for which we shall assume the scal-
ing form Eq. (2). Three counters are updated at each time
step, so ngx=no(L)=3.

Consider first the =0 case. A fraction 3/L of the sites
with counter k& are updated while the others increase their
k wvalue, hence n; (L)=ni(L)(1—3/L) and ni(L)
=3 exp(3k/L) so {=B=0. Since puy=1/L at all times, the
probability of a connected event of s steps also vanishes
exponentially with s, i.e., 7(«=0)=0. For a=0 there are
neither memory nor SOC. The same behavior persists up to
a=1. This results from focusing on a site with k;=k and
considering the probability P,(s) that it will not be selected
in the next s steps, under the condition that in this period it
will not be updated because of its neighbors. It is not difficult
to check that Pk(s)=H;‘=+,§+](l—,u0j7")—>O as s—o for
a<1 which means that any site, if it is not updated by its

TABLE I. Exponents B(a) and {(a). The former was obtained
from the slope of logn,(L) vs logk and confirmed by collapsing data
for L =64, 128, and 256. For the latter we evaluated the slope of
logK(L) vs logL plots.

@ B ¢

1.10 03+ 0.1 0.5+ 02
1.20 0.48 = 0.01 0.90 = 0.04
1.30 0.58 = 0.01 1.40 = 0.06
1.40 0.619 = 0.005 1.53 = 0.03
1.50 0.613 £ 0.005 1.47 = 0.03
1.75 0.571 = 0.005 1.31 = 0.03
2.00 0.545 = 0.005 1.17 £ 0.02
2.50 0.510 = 0.005 1.06 = 0.02

neighbors, will surely be selected sooner or later. The aver-
age age of sites is then at most of order L so that
{(a<1)=B(a<1)=0. The occurrence of SOC can be ex-
cluded as well for a<1. The existence of avalanche events
on all length and time scales requires uq to be finite as
L—x. Using Eq. (2) for ny(L), it is easy to see that
mo=[Zpny (k+1)"°]7 10 for L—> if a+B<]1, ie., if
a<l.

Let us now consider the opposite case: a=ce. In this case
Mmr=0Vk>0 and uy=1/3. The model describes a random
walk on a d=1 lattice. It is not difficult to find {(0)=1 and
B(°)=1/2. The evolution is a single connected event: every
avalanche lasts for an infinite time. For a finite a>1 it is
convenient to generalize the avalanche distribution to ac-
count for infinite avalanches: N(s)=(1—=Nu)N(s)
+ N6, Where N, is the fraction of avalanches that never
stop. These are all those avalanches that began before time
t—maxk;,, which are still active, and which cannot be ter-
minated by any selection event. An avalanche of size s is
terminated when a site with k;>s is selected. This will occur
with probability Pgqp(s)= 2> sy Mk, - We can estimate the
probability that an avalanche is still active as
Pact(SJ)EH;';l[l_Pstop(s—j’t_j)]- Since Pstop(s)
~s17a7 8 we expect No=lim,_,oP,(s)>0 for a+ B>2.
If N.>0, the probability to observe an avalanche of size s
will be N($)=P ,o(5)Pyiop(S)=NoPgop(s) which implies
7= a+ B—1. There is a value a.=2— B(«a.) above which a
finite fraction of infinite avalanches (N,>0) coexist with a
distribution Ny(s) of finite avalanches with an exponent
r(a)=a+pB(a)—1—1 as a—a, the system is in this
sense supercritical.

In the interval ae[1,a.], where N.(a)=0, the usual
scenario of SOC is expected to apply. The 7(«a) exponent is
expected to diverge as a— 1 to signal the onset of the non-
critical phase ae[0,1]. The appearance of infinite ava-
lanches at «, could be accounted for by the divergence of the
normalization of N(s) as 7(a@)—1" for a—a_ . In sum-
mary we expect that @.=2— B(a.)=sup{a;N.(a)=0} and
that 7(«) reaches a minimum 7=1 at «,.

This scenario is supported by computer simulation: (1) for
a<1, as expected, u( vanishes as L—o and K(L) is finite
as L—oo [for =1 the best fit suggests K(L)~InL].
(2) Table I lists the values obtained for the exponents B and
{ by numerical simulations of the model for sizes up to
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L =256 and a>1. The statistical uncertainty gets large as
a=1 is approached from above. The relation {= /(1 — )
is satisfied fairly well. a+ B(«) gets bigger than 2 for
a,=1.4. In this region B(a) reaches a maximum. (3) Ap-
proximately at a,, as seen in Fig. 2, N,(a) becomes posi-
tive. For the sizes we could study (L =<256) the distribution
Ng(s) is not still relaxed to its asymptotic behavior and the
estimates of 7 shown in Fig. 2 are only meant to reproduce
the qualitative behavior of 7(«). For large a, where a stable
behavior of Ng(s) was found with L, we found
7(a)=a+ B(a)—1. Notice that 7 reaches a minimum ap-
proximately in the same region where a+ B~2 and N,

starts to increase. (4) We performed simulations on the BSM
as well. The agreement of B(1.30) and ¢(1.30) with the
exponents measured for the BSM is remarkable and, together
with the vanishing of N,~L ™19, suggests that the BSM be-
longs to the region [1,a.]. The poor quality of our statistics
of avalanches did not allow us to identify the BSM and our
a==1.30 model in a conclusive way. It is interesting to note
that the BSM is very close to the boundary «. beyond which
catastrophic events (infinite avalanches) occur.
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